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Highlights  Abstract  

▪ A novel approach for constructing the feature 

space of lithium-ion battery by fusing the 

traditional manual features and the features 

extracted with 1DCNN. 

▪ A SVM-LSTM fusion model proposed for 

estimating the battery capacity through 

exploring the spatial and temporal relationship 

of features. 

▪ A feasible and precise RUL prediction method 

suitable for the actual engineering background 

of unknown historical capacity data of battery. 

 Under working conditions, since the remaining useful life (RUL) 

prediction of lithium-ion battery is subject to uncertainties of random 

charging and discharging, and infeasibility of battery capacity test, a 

fusion model based RUL prediction method was proposed. First, the 

feature learning method of lithium-ion batteries was developed by 

synthesizing manual extraction and one-dimensional convolutional 

neural network (1DCNN) extraction. Then, a fused method was 

proposed to estimate the historical available capacity through exploring 

the spatial and temporal relationship of features, and the long short-term 

memory (LSTM) network model was adopted for predicting the RUL of 

lithium-ion battery. The proposed method was verified through the 

comparison of different methods, and the results show that it can realize 

highly precise and stable capacity estimation and RUL prediction under 

working conditions. 
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1. Introduction 

In recent years, the world is suffering from deteriorating 

ecological environment and serious resource consumption, so 

new energy vehicles will gradually become the new direction 

and hotspot field of zero-carbon economic development. As the 

best choice of power reserve for current electric vehicles, the 

service performance and operating reliability of lithium-ion 

battery is the key factor affecting the development of new 

energy industry. The users can get to know the health status of 

lithium-ion battery through RUL prediction, to provide 

important basis for preventative maintenance of battery. 

There are two categories of mainstream methods for RUL 

prediction of lithium-ion battery: model-based approach and 

data-driven approach1,. Lithium-ion battery model is the key of 

model-based approach, and electrochemical model, equivalent 

circuit model and empirical model are the most commonly used 

ones. Electrochemical model is to analyze the degradation laws 

of the operating performance of battery in charging and 

discharging cycles based on the quantification of the micro 

change process of internal electrochemical reactions of lithium-

ion battery. By reflecting the degradation laws of external state 
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monitoring data through internal mechanism, it further predicts 

the RUL of lithium-ion battery3-. Equivalent circuit model is 

mainly composed of the ideal voltage source, resistance, 

parallel coupled resistance-capacitance pairs and other simple 

circuit components. Characterized by the simulation of the 

dynamic features of battery, few model parameters and easy 

parameter identification, it is one of the commonly used models 

of battery management system (BMS)6-. Empirical model is to 

construct the degradation model of battery by analyzing the 

decay laws of the health features of lithium-ion battery along 

with the time variation, identify and update the parameters of 

degradation model based on index model, multinomial model or 

filtering algorithm, and then predicts the RUL of lithium-ion 

battery based on extrapolation9. As for the model-based 

approach, the precision of RUL prediction largely relies on the 

accuracy and generalization of the battery model built, with 

certain limitations. 

The data-driven prediction method is independent of the 

internal chemical reaction of lithium-ion battery. Based on 

black-box modeling method, it performs RUL prediction by 

direct exploration of the health features either from external 

monitoring data of battery such as current, voltage, charging and 

discharging time, and temperature, or the internal state 

parameters like impedance and capacity10-. Commonly used 

prediction methods include autoregressive models (ARM), 

support vector machine (SVM), relevance vector machine 

(RVM), and artificial neural network (ANN). Specific to the 

nonlinear aggravated degradation of lithium-ion battery 

performance in later stage of service life, Long et al.13 

introduced accelerated degradation correction factor and built  

a nonlinear ARM for RUL prediction. Wei et al.14 took the 

features extracted from the current data in constant voltage 

charging stage as the input variable and the charging capacity as 

the state variable based on the current data of lithium-ion battery 

in constant-voltage charging stage, to build the SVM state space 

for the available capacity prediction of battery. But the kernel 

function of SVM should meet Mercer conditions, and there is  

a problem of insufficient sparsity. For this purpose, Liu et al.15 

proposed the method of on-line RUL prediction of lithium-ion 

battery based on the RVM algorithm with the highly sparse 

kernel function, which improved the prediction precision and 

output the uncertainty information of prediction results.  

Along with the development of machine learning technology, 

shallow neural network and deep neural network based on deep 

learning are gradually applied in RUL prediction study of 

lithium-ion battery. Wu et al.16 selected the voltage values in 

charging stage as the health factor to build the indirect RUL 

prediction model of lithium-ion battery based on ANN. 

However, when the input data increase, ANN-based model may 

easily be trapped local optimization or overfitting in later stage. 

For effective matching of big data sample, Cao et al.17 extracted 

the features of lithium-ion battery data and performed 

integration through Autoencoder, and then used deep neural 

network for RUL prediction. Wang18 constructed the health 

indicator of lithium-ion battery using kernel principal 

component analysis (KPCA), built the indirect RUL prediction 

model by LSTM network, and carried out test verification. Li et 

al.19 constructed a 1DCNN with fewer network parameters 

taking the voltage, current, and temperature curves of lithium-

ion battery in charging stage as the input, for successful 

prediction of battery capacity. Gao et al.20 developed a RUL 

prediction model by fusing CNN and bi-directional long short-

term memory (Bi-LSTM) network, which features higher 

prediction precision and good stability compared with single 

method. Recently, recurrent neural networks (RNNs) 

represented by LSTM have become one of the most popular 

methods in the study of RUL prediction, and some improved 

methods are gradually developed and applied21. 

On the whole, the data-driven prediction method can 

perform model training based on the monitoring data of external 

battery features, for highly precise RUL prediction. It is  

a technological path much concerned at present. However, 

present studies are mostly centered on the improvement of 

algorithm precision and efficiency in simple application 

scenarios, in lack of deep study on the characteristics of battery 

in actual operating conditions. To this end, this paper sorted out 

two bottleneck issues of RUL prediction for the lithium-ion 

battery in operation. First, due to different driving habits of 

users, the discharge rate and depth, charging state, and aging 

state of lithium-ion battery exhibit randomness, and the charge-

discharge curve show inconsistency in different cycles. In such 

scenario, how to effectively extract more representative and 

robust health features? Second, in actual working condition, the 

real-time available capacity of battery cannot be obtained since 
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a capacity test cannot be done on board just like the case in the 

laboratory environment, and complex service conditions lead to 

the nonlinear and discontinuous behavior of battery 

performance degradation, impeding the smooth progress of 

battery RUL prediction. How to perform RUL prediction based 

on external monitoring parameters such as current and voltage 

when the historical available capacity is unknown?  

Aiming to the above two questions, this paper studied the 

RUL prediction methods of lithium-ion battery under working 

conditions. The remaining chapters of this paper are organized 

as follows. Chapter II performed cycle life test under constant 

current-constant voltage (CC−CV) charge mode and New 

European Driving Cycle (NEDC) discharge mode, to acquire 

the current, voltage, and other external monitoring data of the 

battery in charging and discharging stage. Chapter III studied 

the methods of extracting health features of lithium-ion battery 

by manual knowledge and machine learning, to provide data 

basis for RUL prediction model. Chapter IV studied the method 

of estimating the available capacity of lithium-ion battery based 

on feature parameters, and then constructed the deep learning 

network for RUL prediction of lithium-ion battery. To enhance 

the readability, Figure 1 outlines the main work of this paper.

 

Figure 1. Table of content. 
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2. Cycle life test of lithium-ion battery 

In the cycle life test of lithium-ion battery, the 18650 ternary 

lithium battery was selected as the research object. Set up the 

test platform as shown in Figure 2. The battery test system client 

facilitates the configuration of experimental parameters and the 

collection of data, while the thermostatic chamber furnishes  

a controlled and stable test environment for Li-ion batteries. 

Furthermore, the cycle test equipment is employed to apply 

specific loads during the test procedures.

 

Figure 2. Lithium battery test platform. 

For the cycle life test of the lithium-ion battery, the CC–CV 

charge mode and the NEDC discharge mode were adopted. The 

change trends of voltage and current in the charge stage are 

shown in Figure 3 (a), and the change curves of voltage and 

current in the discharge stage are shown in Figure 3 (b). As can 

be seen from Figure 3 (a), in the constant current charging stage, 

the battery voltage gradually increases till it reaches the 

charging cut-off voltage of 4.2 V as the charging time increases; 

in the constant voltage charging stage, the battery current 

gradually decreases till it reaches the charging cut-off current of 

24 mA as the charging time increases. It can be seen from the 

NEDC discharge condition in Figure 3 (b) that the variation 

trend of voltage and current fluctuates greatly and the 

stabilization time lasts for a short time. 

  
(a) CC−CV charging voltage and current. (b) NEDC discharging voltage and current. 

Figure 3. Voltage and current curves in the charge-discharge stage of lithium-ion batteries.

Adopting the aforementioned charge-discharge mode, the 

cycle life tests of three groups of lithium-ion batteries (capacity 

2.4 Ah) of LiB1, LiB2, and LIB3 were carried out. Figure 4 

shows the degradation curve of the actual available capacity of 

three groups of lithium-ion batteries with the cycle number. 

Here, the horizontal axis represents the number of charge-

discharge cycles, while in the subsequent sections, the term 

“cycle” in figures refers to the number of capacity testing cycles. 

After 1,570, 1,390, and 1,005 charge-discharge cycle tests 

of three groups of lithium-ion batteries, LiB1, LiB2, and LIB3, 

the actual available capacity decayed to 1.906 Ah, 1.896 Ah, and 

1.98 Ah, and the corresponding SOH (calculated by available 

capacity) of the batteries were 79.4%, 79.0% and 82.5% 

respectively. Specially, due to certain fault, battery LIB3 is no 
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longer able to complete a full NEDC discharge cycle, indicating 

that the battery has reached the end of its lifespan. The actual 

available capacity of lithium-ion batteries decreased slowly in 

the initial stage of the charge-discharge cycle life test but 

decreased obviously in the later stage. 

 

Figure 4. Capacity degradations versus cycle number for 

lithium-ion batteries. 

3. Health feature extraction of lithium-ion battery under 

working conditions 

The health features of lithium-ion battery are vital to the 

precision of battery capacity estimation and RUL prediction. 

Under working conditions, the battery features fixed charging 

strategy, and relatively stable charge mode, while the discharge 

mode is more complicated, with prominent phenomenon of 

random discharge. Therefore, only the voltage and current data 

in the charging stage were selected as input to study the method 

of extracting the health features of lithium-ion batteries. 

Although the traditional manual extraction method can extract 

some interpretable features according to experts' experience, it 

is subjective and insufficient to explore the deep characteristics 

of data. The charging data is only a part of the battery charge-

discharge cycle data. To get the health status of the battery based 

on these data, it is necessary to explore deep into the charging 

data. Therefore, the health features of the charging data are 

extracted manually in this paper, and then the CNN method is 

introduced for supplementary feature extraction. 

3.1 Health feature extraction of battery based on 

traditional methods 

Under different cycle periods, the voltage curve of the battery 

in constant current charging stage is shown in Figure 5, and the 

current curve in constant voltage charging stage is shown in 

Figure 6. For the constant current charging stage, the time for 

the battery voltage to rise from the initial voltage to the charging 

cut-off voltage is different. The more cycles of the battery are, 

the shorter the charging time will be, indicating a negative 

correlation between them. For the constant voltage charging 

stage, the time for the voltage to drop from the initial charging 

current to the cut-off current is also different. The more cycles 

of the battery are, the longer the charging time will be, 

indicating a positive correlation between them. Therefore, the 

charging time interval of the battery in the two stages of 

constant current charging and constant voltage charging is used 

as the manually extracted features.  

 

Figure 5. Voltage curves during the constant current charging 

stage under various aging conditions. 

 

Figure 6. Current curves during the constant voltage charging 

stage under various aging conditions. 

Considering the phenomenon that the battery is charged 
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before it is fully discharged and it has power cut off before it is 

fully charged under working conditions, a low voltage point, 

and a high voltage point are set in the middle of constant current 

charging, and the charging time interval between two fixed 

voltage points under different cycles is calculated as the first 

extracted health feature (recorded as 𝐹1), which is called equal 

voltage rise charging interval. Similarly, in the constant voltage 

charging stage, a high current point and a low current point are 

set, and the charging time interval between two fixed current 

points under different cycles is calculated as the second 

extracted health feature (recorded as 𝐹2), which is called equal 

current drop charging interval. Batteries LIB1 and LIB2 are 

selected for feature extraction, and the obtained health feature 

𝐹1 is shown in Figure 7 and health feature 𝐹2 is shown in Figure 

8. 

 

Figure 7. Change trend of health feature 𝐹1. 

 

Figure 8. Change trend of health feature 𝐹2. 

It can be seen that with the increase of cycle number for 

lithium-ion batteries, the equal voltage rise charging interval 𝐹1 

generally shows a decreasing trend, and the equal current drop 

charging interval 𝐹2  basically shows an increasing trend. 

Compared with 𝐹2 , 𝐹1  curve has less fluctuation and better 

stability. In addition, as the number of charge-discharge cycles 

increases, the active substances in the battery decrease, the SEI 

film gradually thickens and the side reactions appear, the decay 

of the available capacity of the battery speeds up, represented 

by the gradual acceleration of the change rate of health feature 

𝐹1 and 𝐹2. This rule is also consistent with the changing trend 

of battery capacity in Figure 1, which further verifies the 

rationality of 𝐹1 and 𝐹2. However, it was also found that 𝐹1 and 

𝐹2 changed obviously in the late period of battery performance 

degradation, but did not change significantly in the middle and 

early period. 

3.2 Health feature extraction of battery based on CNN 

Although the manually extracted features can reflect the health 

state of the battery, they only employ the interval information 

corresponding to the charging time in the two stages of constant 

current charging and constant voltage charging, neglecting  

a large number of rich and valuable temporal information 

contained by the data of voltage and current in the charging 

stage. Therefore, this section applies the 1DCNN method to 

perform convolution and pooling on the current and voltage 

temporal data of lithium-ion batteries, for automatic feature 

extraction of deep information of lithium-ion battery data sets. 

A 1DCNN network structure as shown in Figure 9 is constructed 

by taking the voltage value in constant-current charging stage 

(recorded as CCV) and the current value in constant-voltage 

charging stage (recorded as CVI) of lithium-ion battery as the 

input data sets and the available capacity of the battery as the 

output data set, respectively, and the output of the last pool layer 

is extracted as the health feature. There are three features 

extracted based on CCV data, which are denoted as 𝐹𝑉1, 𝐹𝑉2, 

𝐹𝑉3; there are also three features extracted based on CVI data 

extraction, which are denoted as 𝐹𝐼1 , 𝐹𝐼2 , 𝐹𝐼3 . The 

hyperparameters of 1DCNN network are listed in Table 1, and 

the Dropout rate of the full connection layer is set to 1%. Adam 

optimizer is selected to minimize the total loss, which is 

expressed as the MSE function. The initial learning rate and 

decay rate are set to 0.009 and 0.005, respectively.
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Figure 9. 1DCNN network for health feature extraction. 

Table 1. 1DCNN network hyperparameter settings. 

1DCNN network layers In_channel Out_channel Kernel_size Stride Padding 

Convd1 1 3 17 15 1 

Pooling1 — — 3 2 — 

Convd2 3 3 10 8 1 

Pooling2 — — 2 2 — 

Select LIB1 data for network training and LIB2 data for 

network testing. Limited by space, only two features of 𝐹𝑉1, 𝐹𝑉2 

for LIB2 battery are listed here, as shown in Figures 10 and 11. 

 

Figure 10. Change trend of health feature 𝐹𝑉1. 

 

Figure 11. Change trend of health feature 𝐹𝑉2. 

3.3 Health feature evaluation and screening 

As what mentioned before, there are 2 features for manual 

extraction and 6 features for CNN extraction. Predicting the 

RUL by directly selecting those features may reduce the 

calculation efficiency and generalization of prediction model 

due to the irrelevant or redundant information contained in the 

health features. Therefore, in this paper, the health features 

extracted are evaluated according to two common evaluation 

criteria: correlation and robustness to give basis for feature 

screening. The correlation index 𝑅𝑋𝑌  and robustness 

index𝑅𝑜𝑏(𝐹) can be calculated according to formulas (1) and 

(2). 

 

𝑅𝑋𝑌 =
∑(𝐹𝑖 − 𝐹)(𝑄𝑖 − 𝑄)

√∑(𝐹𝑖 − 𝐹)2 √∑(𝑄𝑖 − 𝑄)2

 
（1） 

Where: 

𝐹𝑖——Value of health feature for the i-th cycle; 

𝑄𝑖——Value of available capacity for the i-th cycle; 

𝐹——Mean of health feature; 

𝑄——Mean of available capacity. 

𝑅𝑜𝑏(𝐹) =
∑ 𝑒𝑥𝑝( − |

𝑅𝐿

𝐹𝐿
|)𝐿

𝑙=1

𝐿
 

（2） 

Where: 

𝐹𝐿 ——Component of stable trend; 

𝑅𝐿 ——Component of random remainder,𝑅𝐿=𝐹 − 𝐹𝐿; 

L ——Length of feature data. 
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According to the formulas above, the greater the absolute 

value of 𝑅𝑋𝑌 is, the stronger the correlation between the health 

features and actual available capacity will be; the greater the 

𝑅𝑜𝑏(𝐹) value is, the stronger the robustness of health features 

will be. 

Analyze battery LIB2 and include the calculated results of 

correlation and robustness of all health features in Table 2. It is 

shown that for manual extraction method, health feature 𝐹1 

exhibits strong correlation and robustness, while health feature 

𝐹2 exhibits higher robustness, but lower correlation. As for the 

1DCNN method, both 𝐹𝑉1  and 𝐹𝑉2 exhibit higher correlation 

and stronger robustness, while 𝐹𝑉3  exhibits higher robustness 

but lower correlation; 𝐹𝐼1, 𝐹𝐼2and 𝐹𝐼3 exhibit higher robustness 

but relatively low correlation. 

Table 2. Evaluation results of health features for battery LIB2.  

Methods 
Health 

features 
𝑹𝑿𝒀 𝑹𝒐𝒃(𝑭) 

Manual 

extraction 

F1 0.815 0.998 

F2 0.203 0.975 

1DCNN
 

𝐹𝑉1 0.845 0.876 

𝐹𝑉2 0.910 0.949 

𝐹𝑉3 0.241 0.945 

𝐹𝐼1 0.635 0.943 

𝐹𝐼2 0.725 0.941 

𝐹𝐼3 0.689 0.945 

According to the evaluation results above-mentioned, three 

health features of 𝐹1, 𝐹𝑉1 and 𝐹𝑉2are screened in this paper to 

build the health feature space, providing data basis for follow-

up RUL prediction of lithium-ion batteries. 

4. RUL prediction of lithium-ion battery in working 

conditions 

Differing from battery test in labs, in actual working condition, 

a capacity test of battery cannot be carried out, and accordingly, 

the real-time available capacity of battery cannot be obtained. 

Therefore, the estimation method of battery available capacity 

based on the health features was studied, and then the RUL 

prediction of lithium-ion battery was explored. 

4.1 Available capacity estimation for lithium-ion battery 

In this section, the data of LIB2 battery was applied to train the 

battery capacity estimation model, and the available capacity of 

LIB3 battery was estimated with the trained model. To better 

explore the mapping relationship between health features and 

available capacity, the SVM and LSTM model was employed to 

mine and capture the spatial and temporal relation among 

battery health features in different cycles, respectively. Then,  

a method synthesizing SVM and LSTM was developed. It is 

noted that since the shuffle method was applied to train the 

model, the validation samples were randomly selected. As  

a result, the following figures may exhibit slight variations in 

representing the estimation effect. Considering the incomplete 

activation behavior of batteries in the early stage of test, the 

front-end test data was cut off when evaluating and predicting 

the battery capacity.  

(1) SVM model 

In consideration of the nonlinear trend of battery capacity 

degradation, radial basis function is selected as the kernel 

function of SVM model for capacity estimation. The setting of 

penalty factor C affects the generalization ability of estimation 

model. The greater the value of penalty factor C is, the weaker 

the generalization ability of estimation model will be; the 

penalty factor C is determined as 10 after training. Figures 12 

and 13 show the curves of capacity estimation versus cycle 

number for batteries LIB2 and LIB3. 

It can be seen that the relative error for capacity estimation 

of lithium-ion battery LIB2 is basically small, and reaches 8.2% 

only at the ending stage of battery life. In consideration that the 

battery is in a poor health at the moment, the chemical reaction 

inside is unstable relatively, resulting in larger prediction error. 

Validating the estimation model with lithium-ion battery LIB3, 

the overall prediction error is basically better controlled and the 

error is relatively large at the end of battery life as well. It shows 

that in the most stages of battery life, SVM model established 

has higher precision for battery capacity estimation, and the 

precision declines to certain extent only at the end of the life. 

Moreover, the estimation precision is high relatively in different 

cycles, but the capacity estimation results fluctuate greatly in 

the entire test period. The reason lies in that for SVM model, 

only the spatial mapping relation between battery capacity and 

health features in certain cycle is taken into account, while the 

temporal relationship of health features in different cycles is 

failed to be fully considered, which has larger influence on the 

stability of estimation results. 
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Figure 12. LIB2 capacity estimation results based on SVM. 

 

Figure 13. LIB3 capacity estimation results based on SVM. 

(2) LSTM model 

To make the best of the temporal information among health 

features of lithium-ion batteries in different cycles, the available 

capacity of lithium-ion batteries is estimated based on LSTM, 

and the curves of capacity estimation for batteries LIB2 and 

LIB3 are shown in Figures 14 and 15. 

 

Figure 14. LIB2 capacity estimation results based on LSTM. 

 

Figure 15. LIB3 capacity estimation results based on LSTM. 

The maximum relative error for capacity estimation of 

lithium-ion battery LIB2 is lower than 4%, and that of lithium-

ion battery LIB3 is lower than 5%. In comparison with SVM 

method, the maximum relative error of LSTM method reduces 

and the prediction curve is smoother. The reason lies in that 

during battery capacity estimation in certain cycle, only the 

health feature of battery in the cycle are input for SVM method, 

and in case of great difference and volatility for the health 

feature, the precision of model estimation is greatly affected. 

While for LSTM method, the temporal relationship among 

features in different cycles is put into full consideration, which 

can better seize the battery performance change trend, and 

therefore, reduces the volatility of capacity estimation results 

and improves the estimation precision and robustness at 

different moments. 

(3) SVM-LSTM fusion model 

To synthesize the advantages of two models SVM and 

LSTM, in this paper, it is explored to fuse the estimation results 

based on SVM and LSTM with weighted mean method. For 

simplifying the weight assignment problem, the estimation 

results are fused through arithmetic mean as below: 

𝑄𝑝 = 𝛼 ⋅ 𝑄𝑆 + 𝛽 ⋅ 𝑄𝐿 = 0.5𝑄𝑆 + 0.5𝑄𝐿    (3) 

Where: 

𝑄𝑆——Capacity estimation results based on SVM; 

𝑄𝐿——Capacity estimation results based on LSTM; 

𝛼、𝛽——Weighted values; 

𝑄𝑃——Fused capacity estimation results. 

Validate the fusion model with data of battery LIB3 and 

obtain the capacity estimation and error results shown in Figures 

16 and 17. Mean Absolute Percentage Error (MAPE) and Root 
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Mean Square Error (RMSE) values are listed in Table 3. 

 

Figure 16. LIB3 Capacity estimation results based on SVM-

LSTM fusion. 

 

Figure 17. Relative errors of LIB3 capacity estimation based 

on SVM-LSTM fusion. 

Table 3. Estimation errors of battery capacity.  

Network 
Lithium-ion 

battery 
Data set 

MAPE 

/ % 

RMSE / 

Ah 

SVM LIB3 Full life cycle 1.13 0.034 

LSTM LIB3 Full life cycle 1.45 0.0355 

SVM-LSTM LIB3 Full life cycle 0.57 0.0163 

(1) The predicted capacity of SVM-LSTM fusion model is 

highly consistent with the real capacity. There is no significant 

abnormal point in the predicted value, and the relative error of 

the prediction is kept within 3% in the whole life cycle of battery. 

The results show that the use of SVM-LSTM fusion model can 

effectively reflect the relationship between the health features 

of lithium-ion battery and the degradation trend of available 

capacity. Such model also features both shallow neural network 

and deep learning network, thus embodying high precision and 

robustness.  

(2) According to the estimation indexes of MAPE and 

RMAE, the SVM-LSTM fusion model offers significant higher 

precision and stability than either SVM or LSTM model. This 

further shows that the SVM-LSTM fusion model can realize  

a good combination of spatial observation and state update by 

better utilizing the spatial and temporal information of heath 

features for lithium-ion battery. This process mode is similar 

with the idea of Kalman filter algorithm. 

4.2. RUL prediction of lithium-ion battery 

As the test object, battery LIB3 is regarded as a battery unit 

working in the real equipment, and its RUL is predicted when 

only the battery current and voltage data are available. In order 

to address this issue, this section includes three parts. First, 

estimate the historical available capacity of LIB3 in the working 

stage based on the trained SVM-LSTM fusion model. Then, 

train the LSTM model for predicting future capacity based on 

these estimated historical capacities. Finally, employ the trained 

LSTM network to predict the degradation trend of future 

capacity, and predict the RUL of battery LIB3 according to 

formula (4). 

𝑅𝑈𝐿 = 𝐶𝑦𝑐𝑙𝑒𝐸𝑂𝐿 − 𝐶𝑦𝑐𝑙𝑒𝑖   (4) 

Where: 𝐶𝑦𝑐𝑙𝑒𝐸𝑂𝐿  is the number of cycles by the end of life 

cycle for lithium-ion battery, which corresponds to the time 

when the battery’s available capacity decayed to 80% of the 

rated capacity in this paper; 𝐶𝑦𝑐𝑙𝑒𝑖 is the number of cycles at 

the forecast starting point. 

We selected the first 50%, 60%, 70%, and 80% of historical 

capacity estimation data in the whole cycle periods as the 

training set, to forecast the available capacity of battery LIB3 in 

the remaining 50%, 40%, 30%, and 20% of the cycle periods. 

Figure 18 presents the trend of the predicted battery available 

capacity by the LSTM method for these four scenarios.  
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（a）50% training set. （b）60% training set. 

  
（c）70% training set. （d）80% training set. 

Figure 18. Forecast trends of available capacities for different forecast starting points.

It should be noted that, to simulate the situation when the 

battery’s historical capacity data is unavailable in practices, the 

capacity data used here for model training is directly taken from 

LIB3 capacity estimation data in Figure 16. In the process of 

training based on the historical capacity estimation data, the 

precision of the RUL prediction model is greatly affected by the 

amount of training data. When 50% training data is adopted, the 

battery is in the early and middle stage of life cycle. Its capacity 

curve shows a changing trend of first decreasing and then 

increasing. The RUL prediction model focuses on the trend 

simulation of two inflection points A and B during training. As 

shown in Figure 16, the historical capacity estimation data 

shows relatively large errors at the inflection points A and B, 

which further increases the change gradient of battery capacity 

and strengthens the local fluctuation of the battery. The training 

error of RUL prediction model will inevitably increase in the 

process of training on this basis. With the gradual increase of 

battery training data, for RUL prediction model, the overall 

trend for the battery’s life stage is emphasized, while the 

training precision of two local points A and B is ignored to some 

extent, thus reducing the impact of battery capacity fluctuation 

on the RUL prediction model and effectively improving the 

overall precision of the RUL model in the whole training 

interval. The true values, predicted values and absolute error 

values of RUL for battery LIB3 at different starting points of 

prediction are listed in Table 4.  

Table 4. RUL prediction results of LIB3 for different forecast 

starting points 

Forecast starting 

points 

RUL true 

values 

RUL predicted 

values 

Absolute 

errors 

50% 74 104 30 

60% 59 51 8 

70% 44 50 6 

80% 29 30 1 

In addition, the RUL prediction effects of battery LIB3 with 

Back Propagation (BP), Gate Recurrent Unit (GRU) and LSTM 

methods were compared. Figure 19 shows the absolute errors of 

the three prediction models at different prediction starting 

points. 
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Figure 19. RUL prediction results of LIB3 with different 

methods. 

It can be seen that when the starting point of prediction is 

gradually moved back, the amount of training data is gradually 

increased, the predicted RUL of lithium-ion battery is gradually 

close to the true RUL, and the absolute error of prediction is 

gradually reduced. When 80% of the battery data is used to train 

the RUL prediction model, the prediction precision is very high. 

The fluctuation degree of battery capacity degradation curve has 

great influence on RUL prediction. In order to simulate the 

regeneration phenomena of the battery in practice, a proper 

period of standing is deployed in the test, which leads to 

capacity recovery to a certain degree after standing, and violent 

fluctuation of the battery capacity degradation curve. In this 

case, small amount of data used for training will easily result in 

the dilemma of local fitting, thus leading to a large deviation 

between predicted RUL and real RUL. Therefore, the battery’s 

capacity degradation curve for the complicated working 

conditions will inevitably show local fluctuation and strong 

nonlinearity. To ensure the precision of RUL prediction, enough 

training data input is required so that the use of training model 

can simulate the overall trend of battery degradation as much as 

possible.  

Furthermore, as shown in Figure 19, the prediction accuracy 

of the LSTM network is superior to that of the GRU network 

and the BP network. Moreover, the LSTM network already 

demonstrates good prediction accuracy when the prediction 

starts at 60%. The LSTM network contains input gates, forget 

gates, output gates, and memory cells. Compared to the GRU 

network and the BP network, the LSTM network has a more 

complex structure, which can better handle long-term 

dependencies and exhibits superiority in processing sequential 

data. Nevertheless, the GRU network only includes update gates 

and reset gates. Although it is faster during training and 

prediction, its effectiveness in handling tasks that require long-

term dependency and memory is not as good as that of the 

LSTM network. When the prediction starting points are set as 

50%, 60%, and 70%, the BP network cannot effectively capture 

the non-linear degradation trend of the battery, resulting in the 

predicted RUL exceeding the normal range. The phenomena is 

approximately depicted with the error results reaching the apex 

of the Z-axis. It further indicates that the BP network is 

constrained by its structure and performs poorly when making 

predictions in the early stages of degradation.   

5. Conclusion 

To address the difficulties of random charging and discharging 

and impossible battery capacity test in RUL prediction of 

lithium-ion battery under working conditions, this paper 

proposed a fusion model based RUL prediction method for 

battery. In terms of the complexity of charging and discharging 

behavior, based on the partial charging data, the feature space 

was constructed by synthesizing the traditional manual features 

and the features extracted by 1DCNN. A SVM-LSTM fusion 

model was explored to estimate the available capacity of 

lithium-ion battery, based on which, the LSTM model is applied 

to predict the RUL of lithium-ion battery. The research results 

indicate: 

(1) The health features extracted by 1DCNN are highly 

correlated with the decay trend of battery capacity, showing 

high robustness. They can effectively make up for the restricted 

data deep mining in manual feature extraction. The constructed 

feature space includes features obtained both from machine 

learning and manual experience, which ensures the flexibility 

and completeness of feature extraction, and interpretability of 

feature extraction based on empirical knowledge. Such feature 

engineering is beneficial to improve the precision of capacity 

estimation and RUL prediction for lithium-ion battery. 

(2) The established RUL prediction process can realize the 

real RUL prediction under the actual engineering background 
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when historical capacity data of battery is unknown. In order to 

accurately estimate the available capacity of battery, this paper 

proposes the SVM-LSTM fusion model, which fully explore the 

spatial and temporal relationship of features, realizing highly 

precise and stable estimation effect. 

(3) When the LSTM method is applied for RUL prediction, 

the precision of prediction result is affected by the amount of 

historical capacity estimation precision and training data. As the 

starting point of prediction is moved backward and data in the 

training set is increased, the coincidence between the prediction 

trend of capacity degradation and the actual capacity change 

trend occurs increasingly, the absolute error of the predicted 

RUL of lithium-ion battery is gradually reduced, and the 

prediction precision is greatly improved. 

Although the proposed method can achieve high prediction 

accuracy, it has not focused on the problem of computational 

efficiency, which is another important consideration in practical 

applications. In addition, the paper only realizes the integration 

of two data-driven models, but the data-model interactive 

method that integrates battery mechanism model with data-

driven model needs to be further explored to address complex 

working conditions, so as to obtain more accurate and robust 

prediction results. With the application of multiple sensors, it is 

also important to study the RUL prediction method based on 

multi-source data22.

Acknowledgments 

The work is supported by the National Natural Science Foundation of China (72001192), the Natural Science Foundation of Henan 

Province (202300410490), the Key Scientific and Technological Program of Henan Province (232102240001). The authors also wish  

to thank them for their financial support. 

References 

1. Zheng Wenfang, Fu Chunliu, Zhang Jianhua, et al. Review of the remaining life prediction methods for lithium-ion battery. Computer 

Measurement & Control 28.12(2020):1-6.  

2. Chen Wan, Cai Yanping, Su Yanzhao, et al. Research on indirect prediction method of remaining useful life of lithium-ion battery. Chinese 

Journal of Power Sources 45.06(2021):719-722+813. 

3. Zhang, Yongzhi, et al. Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE 

Transactions on Vehicular Technology 67.7 (2018): 5695-5705. https://doi.org/10.1109/TVT.2018.2805189 

4. Zheng Jili. Research on electrochemical behavior and optimization of lithium-ion batteries based on mechanism model. 2019. Harbin 

Institute of Technology, MA thesis.  

5. Gambhire, Priya , et al. A physics based reduced order aging model for lithium-ion cells with phase change. Journal of Power Sources 

270.dec.15(2014):281-291. https://doi.org/10.1016/j.jpowsour.2014.07.127 

6. Waag, Wladislaw , et al. Application-specific parameterization of reduced order equivalent circuit battery models for improved accuracy 

at dynamic load. Measurement 46.10(2013):4085-4093. https://doi.org/10.1016/j.measurement.2013.07.025 

7. Fotouhi, Abbas, et al. A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur. Renewable and 

Sustainable Energy Reviews 56 (2016): 1008-1021. https://doi.org/10.1016/j.rser.2015.12.009 

8. Sun Daoming. Research on SOC and capacity estimation methods of power lithium-ion batteries. 2021. Zhejiang University, PhD 

dissertation. 

9. Sun Dong, et al. State of Health Prediction of Second-Use Lithium-Ion Battery. Transactions of China Electrotechnical Society 33. 09 

(2018): 2121-2129. 

10.  Li, Yi, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review. Renewable and sustainable energy 

reviews 113 (2019): https://doi.org/10.1016/j.rser.2019.109254. 

11.  Tang, Xuliang, et al. Lithium-Ion Battery Remaining Useful Life Prediction Based on Hybrid Model. Sustainability 15.7 (2023): 

https://doi.org/10.3390/su15076261.  

12.  Liu, Yanshuo, et al. State-of-health estimation of lithium-ion batteries based on electrochemical impedance spectroscopy: a review. 

Protection and Control of Modern Power Systems 8.3 (2023): 1-17. https://doi.org/10.1186/s41601-023-00314-w 

13.  Long, Bing, et al. An improved autoregressive model by particle swarm optimization for prognostics of lithium-ion batteries. 



Eksploatacja i Niezawodność – Maintenance and Reliability Vol. 26, No. 3, 2024 

 

Microelectronics Reliability 53.6 (2013): 821-831. https://doi.org/10.1016/j.microrel.2013.01.006 

14.  Wei, Jingwen, Guangzhong Dong, and Zonghai Chen. Remaining useful life prediction and state of health diagnosis for lithium-ion 

batteries using particle filter and support vector regression. IEEE Transactions on Industrial Electronics 65.7 (2018): 5634-5643. 

https://doi.org/10.1109/TIE.2017.2782224 

15.  Liu, Datong, et al. Lithium-ion battery remaining useful life estimation with an optimized relevance vector machine algorithm with 

incremental learning. Measurement 63 (2015): 143-151. https://doi.org/10.1016/j.measurement.2014.11.031 

16.  Hu, Yang, and Pengcheng Luob. Performance data prognostics based on relevance vector machine and particle filter. Chemical 

Engineering 33 (2013): 349-354. 

17.  Cao Mengda, et al. Remaining Useful Life Estimation for Lithium-ion Battery Using Deep Learning Method. RADIO ENGINEERING 

51. 07 (2021): 641-648. 

18.  Wang Mingyan. Research on Remaining Useful Life Prediction Method of Lithium-ion Battery Based on Machine Learning.2023. Anhui 

University Of Science & Technology, MA thesis. 

19.  Li Chaoran, et al. An Approach to Lithium-Ion Battery SOH Estimation Based on Convolutional Neural Network. Transactions of China 

Electrotechnical Society 35.19(2020): 4106-4119. 

20.  GAO De-xin, LIU Xin, YANG Qing. Remaining Useful Life Prediction of Lithium-Ion Battery Based on CNN and BiLSTM Fusion. 

INFORMATION AND CONTROL 51. 03 (2022): 318-329+360. 

21.  Ma, Ning, et al. Prediction of the remaining useful life of supercapacitors at different temperatures based on improved long short-term 

memory. Energies 16.14 (2023): 5240. https://doi.org/10.3390/en16145240 

22.  Yi, Zhenxiao, et al. Sensing as the key to the safety and sustainability of new energy storage devices. Protection and Control of Modern 

Power Systems 8.1 (2023): 1-22. https://doi.org/10.1186/s41601-023-00300-2 

 


